By Darrel Hicks

Abstract: When educating the public, we often use words like clean, disinfect, and processed interchangeably. What is often overlooked is that to infection control practitioners, the differences are quite large.

Knowing the difference between these terms can mean the difference between life and death.

Main Article: In our world today, but especially in healthcare, there are few if any, tenets as impervious to overstatement as the importance of cleanliness. A facility might appear to be ‘clean’ and not be safe and disinfected. However, IF the facility is safe and disinfected, it is clean, too.

Improving sanitation (safe, clean and disinfected) and infection prevention can seem to be an expensive proposition, but for hospitals there’s nothing as unaffordable as ‘bad medicine.’ We’re not talking about dollars only. The cost of pain, suffering and death from healthcare acquired conditions has to be considered along with a damaged reputation in the community.

Gus Iverson writes, “Our ancestors in Mesopotamia were washing wounds with alcohol 4,000 years ago, but the real gravity of sanitation didn’t start to resonate until about 150 years ago, when the work of Louis Pasteur led surgeons towards new concepts like wearing gloves and disinfecting their instruments. Today, the mission is clear: to practice medicine in the cleanest environment possible.” Or, as Hippocrates quipped, “FIRST, DO NO HARM.”

Webster defines CLEAN (as an adjective)- free of soil, pollution and other undesirable materials. As a verb- make clean, remove dirt, marks or stains.

In recent years, there has been much discussion and debate surrounding the terms “environmental cleaning” and “environmental disinfection”; to many epidemiologists and microbiologists the terms seem to be interchangeable. “Clean hands” seem to have one definition while “clean environmental surfaces” seem to have different criteria.

Hands can be made clean and safe with potable water, soap, time, proper friction, rinsing with potable water and thorough drying. But, environmental surfaces are rendered “disinfected” by merely wiping the “proper” disinfectant on the hard non-porous surface and allowing the proper contact time (which may take re-wetting the surface six times to attain a 10-minute contact time).

I believe the goal of cleaning hands and environmental surfaces ought to be to break the chain of infection from hosts, to persons or commonly touched surfaces (fomites) and to other humans. Or, as I like to say, returning the commonly touched surface to its “fit for purpose” condition.

In order to make an environmental surface (especially, a frequently touched surface) fit for purpose, I believe the term “processing” should be adopted. Whether addressing the epidemiologist, microbiologist or the front-line Housekeeper, we all understand that environmental surfaces must be processed.

Processing Definition of “PROCESSING” –includes cleaning and disinfecting an item or area using a clean micro-denier cloth or flat mop, and an appropriate and facility-approved, EPA-registered disinfectant. We don’t clean operating rooms, we process them. We don’t clean a patient’s room, the Housekeeper processes the room.

This isn’t a matter of semantics but a realization that a new, more descriptive term must be adopted, understood and communicated to the person who must deliver a safe, clean and disinfected item or area (i.e., the Housekeeper or Cleaning Professional). The Housekeeper’s role must be a part of a multi-modal approach to infection prevention whether she works in a hospital, ambulatory surgery center, long-term care facility, office building, fitness center or an elementary school.

Cleaning Cleaning is not the same as disinfecting or sanitizing. Cleaning may and should occur before disinfecting or sanitizing surfaces. Cleaning is the removal of all foreign material from objects by using water and detergents, soaps, enzymes and the mechanical action of washing or scrubbing the object.

Disinfection/sterilization cannot be accomplished if soil removal is inadequate.

Witness the recent news about “dirty” duodenoscopes causing the death of 100 patients in the U.S.

If 98% of the micro-soil can be removed from an environmental surface with a clean micro-denier cloth and clean potable water, then it doesn’t matter what disinfectant you choose. If microbial pathogens are collected from a hard, non-porous surface, held in the micro-denier cloth and NOT released until laundered, then we change the conversation.

We need to stop looking at the wiping material, be it cotton or man-made fiber, as a cleaning cloth. Instead, it is merely a delivery system for the disinfectant. If the wiping material is binding the active ingredients in the disinfectant, does it matter whether or not the contact time (or dwell time) is observed? If the soil load on a surface is greater than the 5% mandated by EPA’s disinfectant registering protocols, is the efficacy of the disinfectant diminished?

Instead, we should be choosing the best, micro-denier wiper available to do a superior job of soil removal. The guiding principle is always to remove germs if possible rather than kill them, and then, when necessary use the least amount of the mildest chemical or disinfectant that will do the job; because stronger often means more toxic to humans.

In closing, simple cleaning of the environmental surfaces may be one of our key defenses in the future battle against infectious disease. With antibiotic-resistant organisms proliferating on surfaces for up to 56 or more days, the study of cleaning and measuring cleanliness is becoming all important.

Copyright © 2016 InfectionControl.Tips. All rights reserved. Used with permission. For more information, visit InfectionControl.tips

Learn more about the EMist Electrostatic Disinfectant Application System.

Discover how EMist prevents cross-contamination and reduces microbial transmission and infection.