Surface Disinfection

Ensuring The Efficacy Of Disinfectants

Disinfection Insights You Can Use Today

Part 1 of 3: Ensuring The Efficacy Of Disinfectants

According to a recent Time Article, "The world is not ready for the next pandemic ... From Ebola in West Africa to Zika in South America to MERS in the Middle East, dangerous outbreaks are on the rise around the world. The number of new diseases per decade has increased nearly fourfold over the past 60 years, and since 1980, the number of outbreaks per year has more than tripled."

Waging war against deadly germs, a recent article from Facility Cleaning Decisions reported the following.

A recent announcement from the U.S. Environmental Protection Agency (EPA) might make the job of cleaning and disinfecting much more difficult for those in the business of providing clean and sanitary public spaces. Managers in the know may have already read the report, but not all realize how it relates to a hospital, medical facility, ambulatory, or long-term care center."

It is common knowledge that antimicrobial pesticides are designed to destroy or suppress harmful bacteria, viruses, and other microorganisms on inanimate objects and surfaces in healthcare settings.

Most managers also know that the EPA has a testing program — the Antimicrobial Testing Program (ATP) — which has a purpose to ensure that EPA-approved hospital disinfectants and tuberculocides in the marketplace continue to meet stringent efficacy standards. Products found to be effective are reported to the public on the EPA website, and those that do not meet the ATP efficacy standards need to be brought into compliance.

"But according to the Office of Inspector General for the EPA, there are flaws in the process of ensuring the efficacy of hospital-grade, hard-surface disinfectants. The findings were revealed in a report titled “EPA Needs A Risk-Based Strategy To Assure Continued Effectiveness Of Hospital-Level Disinfectants” on September 19, 2016.

The Inspector General (IG) report concluded that the EPA’s Antimicrobial Testing Program, “does not assure that hospital disinfectant products continue to be effective after they are registered,” and that some products listed as effective on the EPA’s website, “could now be ineffective” due to inconsistencies in the manufacturing, product degradation or improper quality assurance.

Read the full article here.

Ensuring The Efficacy of Disinfectants. Reproduced and used with permission from CleanLink - Facility Cleaning Decisions. Copyright 2017 by CleanLink.

E-Mist is dedicated to infection prevention and control. The patented EM360™ Electrostatic Spray System coupled with the SanoTech 360™ Certified Healthy Process make disinfecting better, easier and more cost effective. We help break the chain of infection. Visit our website for more information:

Electrostatic Technology for Surface Disinfection in Healthcare Facilities

Studies have shown that less than 50% of environmental surfaces in patient care rooms are properly cleaned and disinfected. Evidence strongly suggests that cross contamination of microorganisms from environmental surfaces is directly related to patient infections. High-touch surfaces such as bed rails, bed surfaces, tables, fluid poles, doorknobs, and supply carts have all been identified as having the greatest potential for transmission of pathogens. Current cleaning/disinfecting methods and procedures are critical to prevent the transmission of infectious diseases, yet, nearly 100,000 people will die this year directly attributable to HAIs. Electrostatically applied disinfectant may assist in the battle against preventable infections, improve patient experience, while increasing hospital revenues. Main Article:

One out of every 25 patients who are admitted to a hospital will contract a preventable healthcare-acquired infection (HAI). According to a 2002 study, approximately 1.7 million HAIs occur in U.S. acute care hospitals each year, resulting in 99,000 deaths at a total direct, indirect and non-medical social cost estimate of $96-147 billion per year.1,2 Study estimates did not include the more than 26,000 U.S. facilities such as ambulatory surgical centers, skilled nursing, long-term acute care, hospice, or dialysis centers. Obviously these HAI statistics are dated and may be vastly underestimated. In April 2016, the CDC approximated that the actual number of deaths from sepsis were as much as 140% higher than those recorded on death certificates, or as many as 381,000 deaths a year. Sepsis is just one subgroup of the infections.3 Healthcare-acquired infections continue to occur at alarming rates in U.S. hospitals and represent a significant cause of morbidity and mortality. HAIs have a devastating impact on people’s lives, the national economy, hospital reputations and financial sustainability.4


The physical environment is an important link in the chain of infection prevention and control. Contaminated environmental surfaces provide an important potential source for transmission of healthcare-associated pathogens.5 Cleaning and disinfecting of environmental surfaces in healthcare facilities is fundamental in healthcare facilities.6 The Centers for Disease Control and Prevention (CDC) Guidelines recommend that hospitals clean and disinfect all “high-touch surfaces.”7 High-touch surfaces include: bed rails, bed surfaces, supply carts, over-bed tables and intravenous pumps.8 Experts agree that monitoring terminal room cleaning and disinfecting practices in healthcare facilities is an important element of infection control programs.9 Still, studies have indicated that inadequate cleaning and disinfecting of surfaces is widespread with housekeeping wiping only 50% of surfaces targeted for cleaning.10,11,12

One way to break the chain of infection includes the use of innovative technology such as the application of EPA-registered disinfectants using electrostatic systems. As compared to traditional spray-and-wipe, fogging, and UV lighting, electrostatic disinfection application systems present a complementary and cost effective approach to healthcare facility environmental surface disinfection methods. Electrostatic spraying has been used in the agricultural and automobile industry for decades. In effect, a spray gun modified with an electrode charges the liquid particles, which are then guided to an oppositely charged target. Based on Coulomb’s law, an electrostatic disinfectant application system applies disinfectant more evenly to all surfaces. Coulomb’s law states that the magnitude of the electrostatic force of interaction between two point charges is directly proportional to the scalar multiplication of the square of the distance between them. The force is along the straight line joining them.13

Electrostatics is a proven technology in the agricultural and automotive industries. This technology is now being integrated into healthcare settings as a tool to break the chain of pathogen mobility.14 As an example, Creative Solutions in Healthcare owns and operates 46 skilled nursing and 13 assisted living facilities throughout the state of Texas. This top-50 ranked long-term care facility company uses electrostatic application technology in their efforts to prevent the transmission of dangerous pathogens. According to Gary Blake, President of Creative Solutions, this technology “has proven to be far more cost-effective than we ever dreamed possible. There’s a huge chemical cost savings, our employees are healthier – they’re staying at work, so our overtime is down in many markets during flu season. Our residents are returning home sooner from their rehab stays with us instead of going back into the hospital, and that’s gotten the attention of our managed-care insurance companies and even from Medicare.”

Most surface areas are neutral (uncharged) or negative. Electrostatic application for healthcare surface disinfection is a method of applying an EPA-registered disinfectant to a target surface area using electrostatic force of attraction. Using Coulomb’s law, these systems place a positive or negative charge on the chemical disinfectant as it leaves the spray nozzle.15,16 Because most surface areas are neutral or negative, a positively charged electrostatic spray application system optimizes adhesion and attraction (electromagnetic theory17). The dispersed droplets spread out more evenly and seek out the negative (-) or neutrally charged surface (neutral surfaces have the same number of protons as electrons – a neutral object can be polarized by a charged object and create attraction). The disinfectant is more targeted, provides more consistent coverage with less waste, and like two magnets, attracted to the oppositely charged surface with remarkable force.


Most common nosocomial pathogens can survive on surfaces for months18. These deadly bugs can become a continuous source of transmission. As such, regular, preventative surface disinfection is recommended. Wiping hard surfaces with contaminated cloths can contaminate hands, equipment, and other surfaces.19 Those involved in the prevention and control of infections require a balanced approach of cost and quality to improve outcomes. Existing healthcare disinfection methods including wipes, spray and wipe, fogging, and UV lighting all have their place in a multimodal IPC program, but may be ineffective or cost prohibitive for routine or comprehensive use. As environmental surface contamination and healthcare-acquired infections have become more defined, electrostatic disinfection application systems present a viable and cost effective tool in the environmental surface disinfection arsenal.

The battle against nosocomial pathogens is costly. This has become even more pronounced in light of the Hospital Value-Based Purchasing (VBP) Program. VBP rewards or penalizes hospitals based on degrees of care quality. Centers for Medicare & Medicaid Services (CMS) bases hospital performance on an approved set of measures and dimensions grouped into specific quality domains.20 For 2017, The CMS has created a new safety domain that primarily measures infection rates. Yet, most infection prevention and environmental surface teams continue to use antiquated or cost prohibitive disinfection methods including labor-intensive hand-wiping or UV lighting.

As presented, research studies have shown that environmental cleaning and disinfection play important roles in the prevention and control of healthcare-acquired infections. Though prevalent and widely used in other industries, electrostatic technology is now being adopted in the application of disinfectants. This new, innovative technology may assist in the battle against preventable infections, improve patient experience, while also increasing hospital revenues.


  1. Klevens, Monina R., et al. (2002) Estimating Health Care-Associated Infections and Deaths in U.S. Hospitals Center for Disease Control. Retrieved October 12, 2016, from
  2. Marchetti, Albert. Rossiter, Richard. (2013) Economic burden of healthcare-associated infection in US acute care hospitals: societal perspective. Retrieved October 12, 2016 from
  3. Epstein L, Dantes R, Magill S, Fiore A. (2016) Varying Estimates of Sepsis Mortality Using Death Certificates and Administrative Codes — United States, 1999–2014. MMWR Morb Mortal Wkly Rep 65:342–345.
  4. UMF Corporation. (2012) Doing Everything: Multimodal Intervention to Prevent Healthcare-Associated Infections. Retrieved October 12, 2016 from
  5. Donskey, C. J. (2013). Does improving surface cleaning and disinfection reduce health care-associated infections?. American journal of infection control, 41(5), S12-S19.
  6. Centers for Disease Control and Prevention. (2008) Guideline for Disinfection and Sterilization in Healthcare Facilities. Retrieved October 12, 2016 from
  7. Centers for Disease Control and Prevention (CDC). (2003) Guidelines for Environmental Infection Control in Health Care Facilities, Centers for Disease Control and Prevention. Retrieved October 12, 2016 from
  8. Huslage, K., Rutala, W. A., & Weber, D. J. (2010). A quantitative approach to defining “high‐touch” surfaces in hospitals. Infection control and hospital epidemiology, 31(8), 850-853.
  9. Carling, P. C., Briggs, J. L., Perkins, J., & Highlander, D. (2006). Improved cleaning of patient rooms using a new targeting method. Clinical Infectious Diseases, 42(3), 385-388.
  10. Carling, P. C., Parry, M. M., Rupp, M. E., Po, J. L., Dick, B., & Von Beheren, S. (2008). Improving cleaning of the environment surrounding patients in 36 acute care hospitals. Infection Control & Hospital Epidemiology, 29(11), 1035-1041.
  11. Goodman, E. R., Piatt, R., Bass, R., Onderdonk, A. B., Yokoe, D. S., & Huang, S. S. (2008). Impact of an environmental cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on surfaces in intensive care unit rooms. Infection Control & Hospital Epidemiology, 29(07), 593-599.
  12. Garrett, R. (2016) UV Light Disinfection And Other Alternative Methods. CleanLink. Retrieved October 12, 2016 from–19836
  13. Ida, Nathan, 2007, Engineering Electromagnetics, Springer, p. 126.
  14. E-Mist Innovations. (2016) Electrostatic Disinfection System. Retrieved October 12, 2016 from
  15. Bartlett, P.E. Goldhagen, and E.A. Phillips. (2016) Experimental Test of Coulomb’s Law. Oct. 12, 2016.
  16. Tang, K., & Smith, R. D. (2001). Physical/chemical separations in the break-up of highly charged droplets from electrosprays. Journal of the American Society for Mass Spectrometry, 12(3), 343-347.
  17. Maxwell, J.C., 1865, A dynamical theory of the electromagnetic field. Phil. Trans. R. Soc. Lond. 155, 459–512.
  18. Kramer, A., Schwebke, I., & Kampf, G. (2006). How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC infectious diseases, 6(1), 1.
  19. Hughes, R. (Ed.). (2008). Patient safety and quality: An evidence-based handbook for nurses (Vol. 3). Rockville MD: Agency for Healthcare Research and Quality. Chapter 41, Preventing Health Care-Associated Infections.
  20. Department of Health and Human Services. (2015) Hospital Value-Based Purchasing. Centers for Medicare & Medicaid Services.

Copyright © 2016 InfectionControl.Tips. All rights reserved. Used with permission. For more information, visit

Author: Joshua T. Robertson, President, E-Mist Innovations, Inc. Joshua is an entrepreneurial leader, experienced in growing organizations solving big issues within the healthcare space. Prior to joining E-Mist, Joshua launched National HME (NHME) in 2006. NHME partnered with over 500 hospice programs, served 500,000+ patients and created close to 500 jobs throughout the U.S. during his tenure at the company. In 2015, the company recapitalized and yielded a high rate of return for shareholders. Joshua also founded GrowCo Capital in 2014 that invests resources into entrepreneurial businesses and real estate projects throughout the United States. Joshua graduated from Texas Tech University receiving an Executive MBA and a double major in honors management and marketing. He is actively involved in GrowCo Capital, Project 4031, and founding President for the Rawls Raiders Alumni Network (Texas Tech Business School).

About E-Mist E-Mist helps healthcare organizations prevent and reduce HAIs. Founded on a legacy of electrostatic science and technology, the E-Mist Infection Control System and Process eliminates traditional disinfectant methods. The EM360 System is mobile, touchless, safer, cordless, and more cost-effective approach to environmental surface disinfection. E-Mist makes disinfection better, easier and more cost effective.

Seven Aspects of Surface Selection in Healthcare

Choosing the right materials can help prevent healthcare-associated infections

By Linda Lybert

Healthcare acquired infections (HAIs) are the third leading cause of death in the US, behind heart disease and cancer. One in every 25 inpatients will acquire an infection while being treated. These infections lead to the loss of tens of thousands of lives and cost billions of dollars every year. Since these infections are largely preventable, the federal government has added significant penalties to facilities with high infection rates. The pressure is on to address this issue now.


Foundational Issue: The science of surfaces as a fomite (object or material that is likely to carry infection) is just now maturing. Research has shown that microbes can live on “clean and disinfected” surfaces for days, weeks and even months. How is this possible when surfaces are being regularly cleaned and disinfected? The goal of this article is to present seven aspects of surface selection and to gain an understanding of why facilities must set surface criteria to not only minimize financial risk, but also to prevent harm to patients, healthcare workers and the general public.

Surfaces are a complicated subject. Most people think of surfaces as part of the design and construction process and not as part of an infection prevention and control program. When selecting materials, a lot of focus tends to be given to colours and textures that create “a healing environment.” Although these aspects of a surface material are certainly important, there are many other surface properties that are of critical importance, yet are not thought about or given proper evaluation. In order for an environment to be “healing” it need to also not introduce the potential for detrimental effects, like infections. After all, the most soothing colour and texture is of little value to a surface that cannot be cleaned or disinfected properly.

People interact with surfaces throughout the day without a second thought. If hands are washed regularly, a person with a healthy immune system has a good chance of reducing his risk of infection. This is not necessarily true for someone with a compromised immune system.

Ironically, surfaces are often cleaned and disinfected based on visual inspection, even though it is commonly understood that microbes cannot be seen. Research has shown that at the microscopic level, microbe counts can quickly rebound, often times to levels seen prior to cleaning and disinfection. This leaves patients, healthcare workers and the general public at constant risk of acquiring and spreading infection. In fact, studies show that patients are at risk of contracting an infection, such as MRSA or C. Difficilie from the patient who previously occupied the same room at a rate of 35% to 50%, depending on the infection, despite routine and terminal cleaning and disinfection.

Selection of Surfaces: Currently, the surface evaluation and selection process is predominately based on specific design criteria established before any construction or renovation project. The look, feel and where the surface is located are all based on creating a homelike, healing environment. While this is important, the selection of surfaces is complicated and the evaluation process must go far beyond the way it looks and feels. As I see it, the goal is to evaluate ALL surfaces, taking into consideration seven different aspects that contribute to the spread of infection. Ultimately, it is important that surfaces are capable of being effectively cleaned and disinfected. Unfortunately, the majority of surfaces being used in healthcare today are difficult – if not impossible – to clean effectively.

There is a science around the spread of infection via surfaces. It is not enough to learn every physical characteristic of a given surface and surface material, nor to become an expert in the latest disinfection agents and protocols. This data must be combined with an understanding of microbiology, the physical environment and insight into human behaviour. Taking into consideration all seven of the following aspects and entrenching surface selection criteria within healthcare facility construction and renovation specifications will begin to address the critical role surfaces play in reducing HAIs.

1) Materials and Healthcare facilities are full of many different surface materials, textiles and products. Necessary products, such as chairs, beds, sheets, privacy curtains, and bedside tables are selected by looking at sample books or swatches of material, in addition to special features any of these products may offer. While these properties are important, they are only the tip of the iceberg, providing only a small glimpse of what is truly needed in any healthcare setting.

Project managers, architects and designers must be aware of textured surface materials, such as brushed stainless steel, pebble texture acrylic wall surfaces, fabrics with tight or open weave, and vinyl and plastic materials. These types of finishes may create additional challenges during the cleaning and disinfection process.

There are many critical questions to be asked and answered regarding each surface material being considered. A few important ones are:

  • What will it take to clean this surface?
  • Can it be cleaned with the products the facility is currently using?
  • Has it been tested to verify hospital grade disinfectants can be used without causing damage?
  • How often will it need to be cleaned and disinfected to reduce bio-burden and prevent cross-contamination?
  • Will the use of UV light damage cause cracking and damage?

2) Surface Assemblies Selecting a surface based on sample swatches alone does not provide enough insight into what the potential challenges might be. It is critical that during the evaluation process, the assembly of surfaces is understood. Different materials and textiles are often combined into a single product, making the final product difficult (or even impossible) to clean/disinfect. It is true that some of this is completely unavoidable. However, it is possible to reduce the number of products in a room that present difficult or impossible disinfection challenges.

Studies have shown that the area within three feet of the patient in a hospital room is typically heavy with bio-burden, due to patient shedding (see Microbiology section). Cross-contamination can easily occur if levels of bio-burden are not continually reduced to safe levels by cleaning and disinfection. An evaluation of assembled surfaces surrounding the patient will provide insight into the challenges faced when trying to clean and disinfect the many combinations of materials, textures and textiles. Seams, baton strips and connects between surface materials create additional microbial reservoirs that often can be completely avoided when this problem is understood.

3) Microbiology A person typically sheds some 37 million bacteria every hour into the surrounding air and onto environmental surfaces that are continually being touched. Patients are a major source of contamination, and bio-burden is heaviest within three feet of the patient. If the patient is mobile, the patient bathroom is also an area where bio-burden is high. With the knowledge that pathogens survive for days, weeks and months, these areas absolutely need to be able to be effectively cleaned.

Patient shedding is not the only contamination threat. Toilet spray (also referred to as “toilet plume”) plays a major role in the transmission of infectious diseases. Ironically, patient toilets do not typically have lids, due at least in part to the difficulty in cleaning them. After discarding objects laden with viruses and bacteria into a toilet, the toilet is flushed. As a result, these microbes are released into the air and land on surfaces at a relatively high concentration within a three-foot radius of the toilet. This area typically includes a variety of ceramic tiles and many grout lines. Other materials assembled in this area include towels, shower curtains, sinks with faucets. As a result, these surfaces become microbial reservoirs that provide safe harbor where disinfectant products cannot reach their intended target.

4) Location The location of a surface matters. Different departments within the hospital require different surface selection criteria. In areas such as the Emergency Department or Surgery, healthcare professionals are faced with the need to turn over rooms quickly. Often this means that healthcare workers with a primary responsibility for patient care must also clean, disinfect and turnover a room.

I have had many discussions with these professionals who do not understand how critical it is to effectively clean/disinfect all surfaces. A quick tour of these areas immediately reveals a plethora of mixed surface materials and, ultimately, microbial reservoirs. The requirement to turn over rooms quickly in high traffic, highly contaminated areas sets healthcare professionals up for failure.

Recently, a facility was confronted with a community-based outbreak of C. Difficle that had started in the ER and was spreading through the facility. The Infection Prevention staff sent out a protocol that covered personal protective equipment (PPE), hand hygiene, patient assessments and disinfection protocols, but failed to address the evaluation of surfaces and the manner in which they are cleaned. These surfaces may have been a major contributor to persistence of the outbreak.

5) Human Behaviour Patients, healthcare workers and visitors interact with surfaces in many ways. Clothing, equipment and hands become contaminated and move pathogens throughout the patient room and the entire facility.

While being an advocate for a patient during a 3-day acute care hospital stay, I took the opportunity to observe and document human behaviour around surfaces. The behaviour of healthcare workers was fairly common. “Pumping in” by using the hand sanitizer was routine and a good start. However, the very next action was, nearly universally, to reach into a pocket in their scrubs to retrieve a pen and paper. I am sure this happened in every patient room.

Most healthcare workers interacted with surfaces in similar ways and in usually in the same order: computer, mouse, nurse call button, controls on the IV and IV pole, catheter bag, bed, bedding, etc.

Visitors interacted with many of the same surfaces, but they also used areas, such as the windowsill, bed and chair next to the patient bed, which was often covered with a blanket for the patient to sit on. Visitors also used the patient bathroom.

From my observations, specific surfaces that should have been considered “high touch” were not easy to identify, since many people touched virtually every surface within three feet of the patient frequently. On a side note, it is interesting to note that my observation of Environment Services staff in that facility revealed that they cleaned only a few surfaces and ignored other highly touched surfaces during the daily cleaning process. In the absence of thorough cleaning and disinfection, bioburden would have continued to accumulate for days.

6) Cleaning and Disinfection This is an aspect that is obviously critical, but is often misunderstood. Everyone knows it is important to clean and disinfect everything. However, can each surface be cleaned and disinfected effectively in the timeframe set for completing that task? The typical response a manufacturer would give is “yes, you can use anything to clean all surfaces.” Clearly, this is not the case. Not all surfaces of a bed, for instance, can be effectively cleaned and disinfected the same way. Further questioning often begins to reveal a lack of understanding of infection prevention protocol and cleaning and disinfection products that are being used at different times and in different situations.

Surface manufacturers don’t know what they don’t know, particularly when it comes to infection control strategies, processes and products. The recent issue faced by manufactures of ERCP scopes has sent some back to find ways to effectively sterilize their products.

Many different cleaning products are used, some of which can cause serious damage to surfaces. Often, this damage is unseen and creates a microbial reservoir that harbors pathogens that can proliferate, untouched by disinfection products.


7) Manufacturer Warnings Finally, it is extremely important to request and understand manufacturer warnings. Surface materials often come with warnings about using cleaning and disinfection products commonly used in healthcare facilities. Unfortunately, this information is often not documented properly and the knowledge is not passed down to those in charge of cleaning staff. Even with this information, it is important to test surface materials as an assembly, not just the individual components. Testing individual materials will give one result but combined materials cleaned and disinfected can produce an entirely different result. Equipment may include many different surfaces that cannot be cleaned and disinfected the same way. If they are damage could occur, thereby opening areas for microbes to harbor and hide from biocides.

It is not unusual to find that a manufacturer has tested specific chemicals on their product, but has not tested disinfection products. Results can vary when an actual disinfectant product is tested, since it may be composed of multiple active and inactive chemicals. Even if your cleaning products are not called out in manufacturer warnings, make sure to confirm that they are safe to use for each product and surface.

Conclusion: Clearly, environmental surfaces play a critical role in the transmission of HAIs. By being aware of the seven aspects presented here, my hope is to provide a clear understanding of why facilities must set surface criteria to minimize risk and prevent harm to patients, healthcare workers and the general public. By using the seven aspects to create surface selection criteria, facilities will lay the foundation for sustainable reductions in the number of HAIs.


References: Curtis J. Donskey MDa, b. (n.d.). Does improving surface cleaning and disinfection reduce health care-associated infections?

David J. Weber, M. W.-B. (n.d.). Role of hospital surfaces in the transmission of emerging health care-associated pathogens: Norovirus, Clostrimdium difficile, and Acinetobacter species.

J.A. Otter a, b. K. (n.d.). Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection.

Jonathon Sexton, P. R. (n.d.). Rapid Microbial Tracer Movement to Soft Surfaces Throughout Patient Care Areas and the Role of Mixed Surfaces in Infection Prevention. AJIC Journal.

Vickery K, D. A. (n.d.). Presence of biofilm containing viable multiresistant organisms despite terminal cleaning on clinical surfaces in an intensive care unit.

Copyright © 2016 InfectionControl.Tips. All rights reserved. Used with permission. For more information, visit

About: Linda Lybert For the past 17 years Linda has passionately crusaded for surfaces that are cleanable leaving little room for human error when cleaning. As a former member of the FGI Guidelines for Design and Construction of Healthcare Facilities Revision Committee, Linda was instrumental in the creation of the first definition of the ideal surface characteristics for healthcare facilities, published in 2006. Her understanding of surfaces, infection control, regulatory agencies, and the needs of customers creates a communication bridge when working with all stake holders to develop solutions to mitigate the spread of infections. She can be reached at

Electrostatics: A Solution for Healthy Touch Point Surface Treatments

In the infection prevention and control industry, environmental cleaning and disinfecting of surfaces is becoming more important than ever before. Research studies show that environmental cleaning and disinfection can play an important role in helping to prevent the spread of infection. A new, promising technology in this industry is the application of EPA-approved disinfectants utilizing electrostatic application systems for proper surface disinfection. Electrostatics is a proven technology in the agricultural and automotive industries. This technology is now being integrated into the infection prevention and control industry as a tool to break the chain of pathogen mobility.

What is Electrostatics? Electrostatics is a branch of physics that studies the phenomena and properties of stationary or slow-moving electric charges (Electrostatics, 2016). Electrostatic phenomena is easily demonstrated when lint is attracted to clothes, or when dust clings to a TV screen. These descriptions are examples of Coulomb’s law. Coulomb’s law, first published in 1783 by French physicist Charles Augustin de Coulomb, states that opposite electrical charges attract and like charges repel. Electrostatics involves the buildup of charge on the surface of objects due to contact with other surfaces (Electrostatics, 2016). Electrostatic induction charging is a method of creating or generating static electricity in a material by bringing an electrically charged object near it. This causes electrical charges to be redistributed in the material, resulting in one side having an excess of either positive (+) or negative (-) charges.

Using Electrostatics for Surface Disinfection Most surface areas are neutral (uncharged) or negative. Electrostatic application for surface disinfection is a method of applying EPA-registered disinfectants to a target surface area by utilizing electrostatic force of attraction. Simply put, the electrostatic system places an electrical charge on the droplets and disperses them across a target surface area, providing a comprehensive, even coverage. This provides a consistent and uniform coverage in which the droplets adhere to vertical, horizontal and three-dimensional surfaces. As proven in the agriculture and automotive industries, this electrostatic application process takes less time to achieve the desired effect, while substantially reducing chemical costs. (Laryea and No, 2004 and 2005; Matthews, 1992)

Research has shown that microorganisms can survive on surfaces for days, weeks, and even months, and can be hidden from current spray and wipe methods. (Kramer, 2006) Using electrostatic technology provides effective, proven, safe and comprehensive surface coverage and eliminates cross contamination of dangerous pathogens.

Electrostatically-applied disinfectant droplets do not suspend or linger in the air. These electrically charged droplets are super-attracted to their opposites. Subsequently, chemical disinfectants can achieve a 99.999% efficacy rate (with proper dwell times and adherence to EPA chemical recommendations) (Ebron, 2014)

In both third party testing and real world settings, clinical studies have shown electrostatic application methodology can provide efficacy and significant improvements within environmental services terminal cleaning procedures. In the American Journal of Infection Control, a study for decontaminating the operating room environment was presented. It was found that using persistent technology with a quaternary ammonium and trichloromelamine solution using a 40-micron electrostatic applicator will significantly reduce colony-forming units (CFUs) remaining after standard terminal cleaning (Sutton, 2015). A study performed in the laboratory setting with an 85-micron electrostatic applicator utilizing a hydrogen peroxide and sliver based product for efficacy against S. Aureus, P. Aeruginosa, MRSA, and C. Difficile showed an average of 99.999% reduction of vegetative bacteria (S. aureus, P. aeruginosa, and MRSA) and an average 99% reduction of spore-forming bacteria (C. difficile) as labeled on the product for surfaces (Ebron, 2014). Other healthcare system studies have shown a significant decrease in hospital re-admission rates, turnaround times for patient discharge/transfer rooms, chemical consumption, and in labor. (Blake G. and Whiteley, B., 2015)

As the demand continues for improvements in the infection prevention and control industry for HAIs by regulatory agencies, technologies will be sought after to provide cost effective solutions that make surface disinfection faster and more comprehensive. Electrostatic application is one of the technologies that has emerged as a viable solution due to its ability to apply water-soluble chemistry (established efficacy through EPA labeling).


In order for the industry to reach the goals set forth by the Centers of Medicare and Medicaid Services (CMS) for reimbursement of care, a compliant cleaning and disinfecting program of environmental surfaces is necessary. Proper cleaning and disinfecting of environmental surfaces is a proven defense against the spread of infection. Using electrostatic infection control systems in conjunction with standardized protocols and procedures for proper surface disinfection can help meet these challenges.

Electrostatic application systems provide the end user with the ability to solve many of the problems that are present in current methods of disinfection. They reduce the time needed for proper disinfection, provide comprehensive coverage, use less disinfectant, and are easy to operate and maintain.

The infection prevention and control industry is searching for a viable solution to the threats posed by pathogens. The use of electrostatic application systems, combined with proper cleaning and disinfecting procedures, may be a viable solution.

Click here for downloadable PDF version

References: Ebron, T. (2014). Screening Study of the E-Mist Electro-Static Sprayer. Euless: MicroChem Laboratory. Electrostatics. (2016, April 21). Retrieved from Wikipedia: Laryea, G. N. and No, S.Y. (2004). Electrostatic Spray and Atomization for Agricultural Applications. Atomization, 14:33-53. Laryea, G. N. and No, S.Y. (2005). Effect of Fan Speed and Electrostatic Charge on Deposition of Orchard Canopy Sprays, Atomization Sprays, 15: 133-144 Matthews, G.A. 1992. Pesticide Application Methods, 2nd Ed., Longman Singapore Publishers(Pte) Ltd, Singapore. Lyles, R. (2016, January 1). Infection Control Today. (K. M. Pyrek, Interviewer) Sutton, J. (2015). Decontaminating the OR Environment utilizing Persistant Technology.American Journal of Infection Control, 2-117. Blake, G. and Whiteley, B. (2015). Best Practices as it relates to E-Mist system. Case Study for CSNHC. Kramer, A. I. (2006, August 16). BioMed Central Open Access Publisher. Retrieved from

Copyright © 2016 InfectionControl.Tips. All rights reserved. Used with permission. For more information, visit

Author: Brandi Whiteley

Brandi Whiteley received her vocational nursing license from the University of Texas-Brownville in 2005. She began her nursing career caring for geriatric patients in the long-term care setting as well as in home health for many years. She has received numerous certifications and is a strong advocate of infection prevention and control, evidence-based best practices for environmental surface disinfection, and standardizing processes to stop the spread of unnecessary sickness and infection. Mrs. Whiteley is the Director of Clinical Services for E-Mist Innovations where she developed and implemented standard operation procedures using electrostatics in the long term care industry. Most recently, providing onsite electrostatic disinfection application, protocol, education and training to 48 LTC facilities in Texas. These facilities have been recognized as Touch Point Healthy Certified. For more information: E-Mist Innovations

Comprehensive Infection Control System

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Text" background_layout="light" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"] New Solution Identifies Bacteria Threats and Equips Healthcare Workers to Fight Infections

The Centers for Disease Control and Prevention (CDC) reports that more than 1.7 million people each year will be infected with a healthcare acquired infection (HAI). To track and prevent HAIs they recommend that healthcare facilities perform tests to monitor bacteria rates in the exact same area at each test so that the comparative data is accurate. To meet and exceed these guidelines, E-Mist Innovations partnered with Next Level 11 to provide the first and only, comprehensive, end-to-end infection control system process in the healthcare setting.

The new process combines E-Mist’s patented electrostatic disinfectant application system, which delivers safer surfaces, lower costs, reduced manpower and keeps people healthier with Next Level 11’s Test, Track, Treat and Train protocol for bacteria eradication.

“We truly believe that this combined solution will change the way the healthcare industry treats and combats infections,” said George Robertson, CEO, E-Mist Innovations. “For years it’s been impossible to know if surfaces are healthy. With this tracking technology, along with surface treatment through electrostatic technology – we now have a sophisticated solution that monitors, manages, tracks and provides real-time bacteria level results to users. We are now able to identify where bacteria is located – even down to an area as specific as an IV pole – and use E-Mist systems to disinfect the equipment or area.”

Real-Time Monitoring and Results

Next Level 11 developed the BAC-TRACK square, an adenosine triphosphate (ATP) monitoring system which allows users to track contamination and maintenance levels on equipment. This square is linked to the company’s BAC-TRACK software which allows hospital managers and leadership teams to login to a dashboard to view monthly trends, treatment, cleaning effectiveness and even pinpoint where the highest risk areas are for contamination – in real time. The software identifies the highest risk in chronological order, down to the location, department, room and even piece of equipment. This helps healthcare providers have the correct documentation to provide regulatory agencies during annual reviews and surveys.

“By measuring the data, teams are given better ways to improve disinfecting protocols,” said Scott McDaniel, CEO, Next Level 11. “Now that we’re working with E-Mist we’re able to equip users with a proper way to apply chemicals. We’re already seeing better coverage of chemicals. It’s essentially a way to remove the human error factor from the process while delivering less chemicals and better coverage. In all, overall contamination levels have been reduced since using E-Mist systems.”

E-Mist uses proprietary adaptations of electrostatic technology and induction charging of liquid droplets to produce precise, controlled, high-performance liquid application and management capabilities for treatment of hard and soft surfaces. The charged droplets seek out the target magnetically, more forcefully and with greater surface adhesion. Meaning, that the droplets cling to the surface with a comprehensive coverage effect to allow for proper dwell time, equating to a disinfected surface.

E-Mist recently launched the BackPack System – a new, mobile, cordless electrostatic application system. The unit is ideal for offices, medical facilities, long-term care facilities, schools, daycares, food processing plants and all methods of transportation – anywhere mobility is critical. Users simply wear the applicator just like any backpack.


E-Mist Revolutionizes Cleaning Industry

[et_pb_section transparent_background="off" allow_player_pause="off" inner_shadow="off" parallax="off" parallax_method="on" make_fullwidth="off" use_custom_width="off" width_unit="off" custom_width_px="1080px" custom_width_percent="80%" make_equal="off" use_custom_gutter="off" fullwidth="on" specialty="off" admin_label="section" disabled="off"][et_pb_fullwidth_post_title title="on" meta="on" author="off" date="off" date_format="M j, Y" categories="on" comments="off" featured_image="on" featured_placement="below" parallax_effect="on" parallax_method="on" text_orientation="left" text_color="dark" text_background="off" text_bg_color="rgba(255,255,255,0.9)" module_bg_color="rgba(255,255,255,0)" admin_label="Fullwidth Post Title" title_all_caps="off" use_border_color="off" border_color="#ffffff" border_width="1px" border_style="solid" disabled="off"] [/et_pb_fullwidth_post_title][/et_pb_section][et_pb_section transparent_background="off" allow_player_pause="off" inner_shadow="off" parallax="off" parallax_method="on" make_fullwidth="off" use_custom_width="off" width_unit="off" custom_width_px="1080px" custom_width_percent="80%" make_equal="off" use_custom_gutter="off" fullwidth="off" specialty="off" admin_label="Section" disabled="off"][et_pb_row make_fullwidth="off" use_custom_width="off" width_unit="off" custom_width_px="1080px" custom_width_percent="80%" use_custom_gutter="off" gutter_width="3" allow_player_pause="off" parallax="off" parallax_method="on" make_equal="off" parallax_1="off" parallax_method_1="on" parallax_2="off" parallax_method_2="on" parallax_3="off" parallax_method_3="on" parallax_4="off" parallax_method_4="on" admin_label="Row" disabled="off"][et_pb_column type="4_4" disabled="off" parallax="off" parallax_method="on"][et_pb_text background_layout="light" text_orientation="left" admin_label="Text" use_border_color="off" border_style="solid" disabled="off"]

As a revolutionary electrostatic disinfectant application system that delivers safer surfaces, lowers costs and keeps people healthier, E-Mist Innovations is launching the Backpack System – a new, mobile cordless electrostatic application system.

“The Backpack System is revolutionizing the disinfection process,” said George Robertson, chairman and CEO, E-Mist. “We strive to save companies money, but at the end of the day it’s about keeping people healthy. Early reports from the field are indicating that the Backpack System is more efficient than previous solutions. They are able to cover more than 54,000 sq. ft. in one hour. This means that less labor is needed because the job can get done faster. And, less chemicals are required – a benefit shared by all of E-Mist’s products because of our technology.”

The Backpack System is perfect for offices, medical facilities, long-term care facilities, schools, daycares, food processing plants and all methods of transportation – anywhere mobility is critical. Users simply wear the applicator just like any backpack. The unit is cordless and powered by a lithium ion battery that uses smart technology, which automatically shuts down when there is 20 percent battery life left, thus maintaining the integrity of the battery. The Backpack System holds one gallon of water soluble liquid – which is filled with the user’s choice of cleaning product including disinfectants, sanitizers, deodorizers and cleaners.

How it Works
E-Mist uses proprietary adaptations of electrostatic technology and induction charging of liquid droplets to produce precise, controlled, high-performance liquid application and management capabilities for treatment of hard and soft surfaces. The charged droplets seek out the target magnetically, more forcefully and with greater surface adhesion. Meaning, that the droplets cling to the surface with a comprehensive coverage effect to allow for proper dwell time, equating to a disinfected surface.

Cleaning Versus Disinfecting
A fundamental concept behind E-Mist’s technology is that there is a critical difference between cleaning and disinfecting. Cleaning equates to using soap and water to remove dirt and some of the germs. Disinfecting means actually destroying the germs, not just moving them around. With electrostatic technology E-Mist’s products disinfect, which is the ultimate goal for keeping people healthy.

Email changed the way we communicate. E-Mist is changing the way we disinfect. We’re empowering cleaning and sanitation workers with game-changing tools to more safely, effectively and efficiently get ahead of pathogen mobility. We’re also liberating people from the nightmare of infectious diseases from the Ebola virus to influenza, by removing the deadly threat of pathogens from the everyday world,” Robertson said.

About E-Mist Innovations
E-Mist’s patented electrostatic disinfectant application systems deliver safer surfaces, lower costs, reduce manpower and keep people healthier. With E-Mist, users can kill up to 99.999 percent of pathogens when applied as directed with specific chemicals stipulated by the EPA, disinfecting any room in seconds. Headquartered in Fort Worth, Texas, E-Mist is focused on improving the ability of professionals to stop the unnecessary spread of sickness and infection.


E-Mist Innovations Solves Proper Surface Disinfection

[et_pb_section bb_built="1" admin_label="section" fullwidth="on"][et_pb_fullwidth_post_title admin_label="Fullwidth Post Title" title="on" meta="on" author="off" date="off" categories="on" comments="off" featured_image="on" featured_placement="below" parallax_effect="on" parallax_method="on" text_orientation="left" text_color="dark" text_background="off" text_bg_color="rgba(255,255,255,0.9)" module_bg_color="rgba(255,255,255,0)" title_all_caps="off" use_border_color="off" border_color="#ffffff" border_style="solid" /][/et_pb_section][et_pb_section bb_built="1" admin_label="Section" fullwidth="off" specialty="off"][et_pb_row admin_label="Row"][et_pb_column type="4_4"][et_pb_text admin_label="Text" background_layout="light" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

The desired success of infection control efforts and spending has been held back for many years by counterproductive processes and underutilized disinfectants. E-Mist Innovations announces the FACTS™ proper surface disinfection protocol as the first standard of guidelines that accurately anticipates the actual behavior of surface transferrable pathogens.

E-Mist Innovations has completed a year-long analysis of touch point surface infection control processes, agents, and technologies and has now published findings and recommendations within the FACTS™ proper surface disinfection protocol. As disappointing results continue to challenge infection control industry professionals and stakeholders, E-Mist Innovations is pleased to announce a protocol that is proving to be more effective, practical and financially favorable when executed properly.

FACTS™ is now available for distribution at no cost to infection control professionals and risk managers responsible for slowing or stopping the spread of sickness and infection via unhealthy surface touch points. Today, too many highly accessible surfaces remain unhealthy when attempting to stay ahead of the mobility of pathogens in real time. Additionally, with spray-and-wipe protocols in particular, crews fall short of achieving the designed effectiveness of most disinfectants and agents as well.

“What we discovered in our research is that there are plenty of common sense guidelines addressing surface disinfection, and a strong desire for better results, but none offer the guidance needed for real or proper results. The market needed help to better understand how to get organized around real time disinfection best practices in keeping touch points healthy, and to accomplish this without breaking the bank. Our contribution to the FACTS™ protocol and the development of agile infection control technologies in this fight are accomplishments we are very proud of.” George Robertson, CEO

About E-Mist Innovations E-Mist Innovations, Inc. is a Fort Worth, Texas headquartered industry leading developer and designer of innovative infection control systems and protocols. Winner of the recent Tech Fort Worth IMPACT award, E-Mist offers the SanoTech 360 Infection Control System and facility certification program to satisfy the FACTS™ surface disinfection protocol for both simple and complex environments alike.